Nabin K. Malakar, Ph.D.

NASA JPL
I am a computational physicist working on societal applications of machine-learning techniques.

Research Links

My research interests span multi-disciplinary fields involving Societal applications of Machine Learning, Decision-theoretic approach to automated Experimental Design, Bayesian statistical data analysis and signal processing.

Linkedin


Interested about the picture? Autonomous experimental design allows us to answer the question of where to take the measurements. More about it is here...

Hobbies

I addition to the research, I also like to hike, bike, read and play with water color.

Thanks for the visit. Please feel free to visit my Weblogs.

Welcome to nabinkm.com. Please visit again.

Showing posts with label article. Show all posts
Showing posts with label article. Show all posts

Saturday, November 3, 2018

Importance Of Physics Education In Nepal: The Rising Nepal/Oct 27, 2018


Importance Of Physics Education In Nepal 
Dr. Rudra Aryal, 
Hunter Francoeur &
Dr. Nabin K Malakar
Physics, the Greek meaning of “nature”, is a science that plays a key role in the daily life of human societies. It is the study of matter, energy and their interactions. According to a statement adopted by the International Union of Pure and Applied Physics (IUPAP, 1999), “Physics is an international enterprise, which plays a key role in the future progress of humankind”. Physics plays a key role in the world and generates fundamental knowledge. The influence of physics leads to the transfer of old technologies to the development of new ones along with productivity in economies. The interdisciplinary nature of economic growth also relies on greater cooperation between physics and other sciences. Therefore, physics education is an essential part of an advanced society.

Impacts
The Institute of Physics (IOP), a London based leading scientific membership society working to advance physics for the benefit of all, have reported that Physics-based companies contribute to about nine percent of the UK’s economic output and employ millions of people. Moreover, physics-based industries have multiple impacts on a country’s economy. An IOP study established that for every dollar amount invested into the physics-based industry can contribute to more than twice the value to the economy as a whole. The range of applications goes from manufacturing, fuel, crude materials, electro-mechanical, through optical-communication industries. No fields remain untouched by the impacts of physics. A famous example of how physics can aid in boosting the economic growth of a country can be illustrated by the following anecdote. Around 1850, William Gladstone, a British statesman, asked Michael Faraday why electricity was valuable. Faraday answered, “One day, you may tax it.” Obviously, one cannot imagine a standing nation without electricity today. 
A better understanding of physics leads to a greater economic growth. Einstein’s formula of E= mc2 allowed us to harvest energy from the physical matter. When the first nuclear weapon was designed by Nuclear Physicist Robert Oppenheimer, during the Manhattan Project, it opened the door to understanding the strength of Physics in the modern society post the Second World War. This idea created the mantra that fields such as nuclear energy, pharmaceuticals, and space exploration could leapfrog a country out of its developing state and into the industrialized era. Study of physics is also perceived as the study of prosperity. 
According to the American Institute of Physics (AIP) 2016 reports, government-supported research, and development (R&D) in the United States is less than quarter fraction while more than two-thirds of the US R&D is supported by the business-funded venues. However, basic research is still mostly supported by the US Federal government through universities and higher educational institutions. If one were to analyze the sources of funding published by the National Science Foundation’s National Center for Science and Engineering, the total R&D funding is continually increasing past 500 billion dollars since the record began in 1953. The business-sponsored R&D has increased from less than 0.6 percent of GDP in the 1950s to about 2 percent in recent years. Clearly, as the economic and business growth takes place, the industry would be able to self-support the cutting edge research as indicated by the current trends in the developed nations.
The general desire of a country to jump forth into the industrialized stage can be accomplished through research in the cutting-edge topics. However, developing nations are not able to support or maintain these cutting-edge research endeavors. Physics in developing countries should rather focus on implementing technologies to aid the current situation, developing a basic level of science education to the public, and creating programs to involve science within the government. Once basic needs are met physics and science will be able to aid the country in many aspects of life.
The first area that developing countries need to focus on is making the government more open to physics and science as an institution. By putting forth an effort to increase the knowledge of such sciences in the policy level, they can be applied to many aspects of life such as agriculture, medicine, and even everyday necessities such as electricity. This can start simply by taking more value in science during education and creating a foundation for the younger generation to learn. 
The governments in developing countries should focus on the basic education of the general population in physics and science. This would be one major stepping stone towards achieving economic growth. On a global scale, eighty percent of the world’s population is located in developing countries but only twenty-eight percent of the world’s scientists come from these countries. During the colonization of many countries, education in science was limited to colonial elites who meant for their children to have higher access in countries such as the United Kingdom. Flash forward to the 1960’s and this practice was partly maintained, instead of colonial elites science education is mainly held for higher class citizens at the secondary level. 
Once the developing countries prepare a foundation of basic science education at home then the people who are knowledgeable in physics and science can travel to other countries to bring back ideas. According to the statistics survey published by American Institute of Physics (AIP) in 2014, about 50 percent of the Ph.D. students in the USA are comprised of international students. The proportion has been about 50/50 for the last two decades. We are familiar with the trend that many physicists from developing countries are going to the USA and other developed countries for their higher education in Physics, and sciences in general. For example, more than four hundred Nepali Physicists, about ten percent of total physicists of Nepal, have received their doctorate level education in Physics from the USA. The Condensed matter physics is the most popular field in the USA followed by the particle and astrophysics. 
According to an informal survey conducted by the Association of Nepali Physicists in America (ANPA), the condensed matter physics, and Atomic, molecular, and optical physics (AMO), Atmospheric Physics, Nuclear Physics are the most favorite topics among the physicist from the Nepali diaspora, also a good percentage are engaged into the cutting-edge Solar/photovoltaic research, biomedical physics. It is timely that the government of Nepal should connect the scientific diaspora for the transfer of knowledge to their country of origin. As an example, Physics-based projects can be used for the development for the simple things to make life at the ground level easier for the general population. Notably, there are various efforts at the personal levels in which spontaneous attempts being made to bring science to society.
Some of the examples could include, but not limited to creating water filtration systems, geological exploration, or improving agricultural and medical practices using state-of-the-art drone technologies that will greatly facilitate countries. An idea in emerging technologies for alternative energy such as solar, or windmill, although not simple or cheap to implement may start a snowball effect in bringing the country out of the developing state. After a thorough feasibility study, the energy can be used to power production plants, which can then be utilized to create machinery that can create a system of carbon-neutral roadways and distribute electricity to all villages. This will create tremendous bounds for the country and improve all aspects of life. This energy can also be utilized in other ways such as creating farming machinery or serving in remote hospitals for people who are suffering. On top of this, it will also stimulate the economy creating new jobs and a means of making income.
To sum up, Physics plays a key role in the world and generates fundamental knowledge. While it is a normality in many industrialized countries, it is severely lacking in the developing countries. Physics education programme should be implemented from the governmental level to improve education and provide incentives for physics and engineering based companies that can improve quality of life.
Workforce
Developing a strong physics program with the support of research, scholarships, and fellowships for undergraduate and graduate students can make a huge difference in the education of Nepal. Once an expert workforce has been created ideas for improving life can bring in. One simple idea such as this can help improve the manufacturing of goods and help create roadways and give energy access to millions who lack it. Physics should focus on areas that would be most rewarding to the immediate situation of the country.


Published: 27 Oct, 2018 
http://therisingnepal.org.np/news/26644